Background: The von Willebrand factor (VWF) is a multimeric plasma glycoprotein essential for hemostasis, inflammation, and angiogenesis. The majority of VWF is synthesized by endothelial cells (ECs) and stored in Weibel-Palade bodies (WPB). Among the range of proteins shown to co-localize to WPB is angiopoietin-2 (Angpt-2), a ligand of the receptor tyrosine kinase Tie-2. We have previously shown that VWF itself regulates angiogenesis, raising the hypothesis that some of the angiogenic activity of VWF may be mediated by its interaction with Angpt-2.
Methods: Static-binding assays were used to probe the interaction between Angpt-2 and VWF. Binding in media from cultured human umbilical vein ECs s and in plasma was determined by immunoprecipitation experiments. Immunofluorescence was used to detect the presence of Angpt-2 on VWF strings, and flow assays were used to investigate the effect on VWF function.
Results: Static-binding assays revealed that Angpt-2 bound to VWF with high affinity (KD,app ∼3 nM) in a pH and calcium-dependent manner. The interaction was localized to the VWF A1 domain. Co-immunoprecipitation experiments demonstrated that the complex persisted following stimulated secretion from ECs and was present in plasma. Angpt-2 was also visible on VWF strings on stimulated ECs. The VWF-Angpt-2 complex did not inhibit the binding of Angpt-2 to Tie-2 and did not significantly interfere with VWF-platelet capture.
Conclusions: Together, these data demonstrate a direct binding interaction between Angpt-2 and VWF that persists after secretion. VWF may act to localize Angpt-2; further work is required to establish the functional consequences of this interaction.
Keywords: Weibel–Palade bodies; angiogenesis; angiopoietin-2; endothelial cells; von Willebrand factor.
Crown Copyright © 2023. Published by Elsevier Inc. All rights reserved.