Background: Left ventricular assist devices (LVAD) provide circulatory blood pump support for severe heart failure patients. Pump inflow obstructions may lead to stroke and pump malfunction. We aimed to verify in vivo that gradual inflow obstructions, representing prepump thrombosis, are detectable by a pump-attached accelerometer, where the routine use of pump power (PLVAD) is deficient.
Method: In a porcine model (n = 8), balloon-tipped catheters obstructed HVAD inflow conduits by 34% to 94% in 5 levels. Afterload increases and speed alterations were conducted as controls. We computed nonharmonic amplitudes (NHA) of pump vibrations captured by the accelerometer for the analysis. Changes in NHA and PLVAD were tested by a pairwise nonparametric statistical test. Detection sensitivities and specificities were investigated by receiver operating characteristics with areas under the curves (AUC).
Results: NHA remained marginally affected during control interventions, unlike PLVAD. NHA elevated during obstructions within 52-83%, while mass pendulation was most pronounced. Meanwhile, PLVAD changed far less. Increased pump speeds tended to amplify the NHA elevations. The corresponding AUC was 0.85-1.00 for NHA and 0.35-0.73 for PLVAD.
Conclusion: Elevated NHA provides a reliable indication of subclinical gradual inflow obstructions. The accelerometer can potentially supplement PLVAD for earlier warnings and localization of pump.
Keywords: LVAD pump thrombosis; accelerometer; detection; inflow obstruction; pump vibrations.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.