Electronuclear Transition into a Spatially Modulated Magnetic State in YbRh_{2}Si_{2}

Phys Rev Lett. 2023 Mar 24;130(12):126802. doi: 10.1103/PhysRevLett.130.126802.

Abstract

The nature of the antiferromagnetic order in the heavy fermion metal YbRh_{2}Si_{2}, its quantum criticality, and superconductivity, which appears at low mK temperatures, remain open questions. We report measurements of the heat capacity over the wide temperature range 180 μK-80 mK, using current sensing noise thermometry. In zero magnetic field we observe a remarkably sharp heat capacity anomaly at 1.5 mK, which we identify as an electronuclear transition into a state with spatially modulated electronic magnetic order of maximum amplitude 0.1 μ_{B}. We also report results of measurements in magnetic fields in the range 0 to 70 mT, applied perpendicular to the c axis, which show eventual suppression of this order. These results demonstrate a coexistence of a large moment antiferromagnet with putative superconductivity.