The development of radioresistant oral squamous carcinoma cell lines and identification of radiotherapy-related biomarkers

Clin Transl Oncol. 2023 Oct;25(10):3006-3020. doi: 10.1007/s12094-023-03169-7. Epub 2023 Apr 7.

Abstract

Background: In the treatment of oral squamous cell carcinoma (OSCC), radiation resistance remains an important obstacle to patient outcomes. Progress in understanding the molecular mechanisms of radioresistance has been limited by research models that do not fully recapitulate the biological features of solid tumors. In this study, we aimed to develop novel in vitro models to investigate the underlying basis of radioresistance in OSCC and to identify novel biomarkers.

Methods: Parental OSCC cells (SCC9 and CAL27) were repeatedly exposed to ionizing radiation to develop isogenic radioresistant cell lines. We characterized the phenotypic differences between the parental and radioresistant cell lines. RNA sequencing was used to identify differentially expressed genes (DEGs), and bioinformatics analysis identified candidate molecules that may be related to OSCC radiotherapy.

Results: Two isogenic radioresistant cell lines for OSCC were successfully established. The radioresistant cells displayed a radioresistant phenotype when compared to the parental cells. Two hundred and sixty DEGs were co-expressed in SCC9-RR and CAL27-RR, and thirty-eight DEGs were upregulated or downregulated in both cell lines. The associations between the overall survival (OS) of OSCC patients and the identified genes were analyzed using data from the Cancer Genome Atlas (TCGA) database. A total of six candidate genes (KCNJ2, CLEC18C, P3H3, PIK3R3, SERPINE1, and TMC8) were closely associated with prognosis.

Conclusion: This study demonstrated the utility of constructing isogenic cell models to investigate the molecular changes associated with radioresistance. Six genes were identified based on the data from the radioresistant cells that may be potential targets in the treatment of OSCC.

Keywords: Biomarkers; Differentially expressed genes; Oral squamous cell carcinoma; Radioresistance; Radiotherapy.

MeSH terms

  • Biomarkers
  • Biomarkers, Tumor / genetics
  • Carcinoma, Squamous Cell* / genetics
  • Carcinoma, Squamous Cell* / pathology
  • Carcinoma, Squamous Cell* / radiotherapy
  • Cell Line, Tumor
  • Gene Expression Profiling
  • Gene Expression Regulation, Neoplastic
  • Head and Neck Neoplasms* / genetics
  • Humans
  • Membrane Proteins / genetics
  • Mouth Neoplasms* / genetics
  • Mouth Neoplasms* / pathology
  • Mouth Neoplasms* / radiotherapy
  • Phosphatidylinositol 3-Kinases / genetics
  • Radiation Tolerance / genetics
  • Squamous Cell Carcinoma of Head and Neck / genetics
  • Squamous Cell Carcinoma of Head and Neck / radiotherapy

Substances

  • Biomarkers
  • Biomarkers, Tumor
  • TMC8 protein, human
  • Membrane Proteins
  • PIK3R3 protein, human
  • Phosphatidylinositol 3-Kinases