A decade ago, an electron-attachment process called interatomic Coulombic electron capture has been predicted to be possible through energy transfer to a nearby neighbor. It has been estimated to be competitive with environment-independent photorecombination, but its general relevance has yet to be established. Here, we evaluate the capability of alkali and alkaline earth metal cations to capture a free electron by assistance from a nearby water molecule. We introduce a characteristic distance rIC for this energy transfer mechanism in equivalence to the Förster radius. Our results show that water-assisted electron capture dominates over photorecombination beyond the second hydration shell of each cation for electron energies above a threshold. The assisted capture reaches distances equivalent to a fifth to seventh solvation shell for the studied cations. The far reach of the assisted electron capture is of significant general interest to the broad spectrum of research fields dealing with low-energy electrons, in particular radiation-induced damage of biomolecules. The here introduced distance measure will enable quantification of the role of the environment for assisted electron attachment.