Objectives: The Glucokinase Regulatory Protein GKRP, encoded by GCKR, enables acute regulation of liver glucokinase to support metabolic demand. The common human GCKR rs1260326:Pro446 > Leu variant within a large linkage disequilibrium region associates with pleiotropic traits including lower Type 2 diabetes risk and raised blood triglycerides and cholesterol. Whether the GCKR-P446 > L substitution is causal to the raised lipids is unknown. We determined whether mouse GKRP phenocopies the human GKRP:P446 > L substitution and studied a GKRP:P446L knockin mouse to identify physiological consequences to P446 > L.
Methods: GKRP-deficient hepatocytes were transfected with adenoviral vectors for human or mouse GKRP:446 P or 446 L for cellular comprehensive analysis including transcriptomics consequent to P446 > L. Physiological traits in the diet-challenged P446L mouse were compared with pleiotropic associations at the human rs1260326 locus. Transcriptomics was compared in P446L mouse liver with hepatocytes overexpressing glucokinase or GKRP:446 P/L.
Results: 1. P446 > L substitution in mouse or human GKRP similarly compromises protein expressivity of GKRP:446 L, nuclear sequestration of glucokinase and counter-regulation of gene expression. 2. The P446L knockin mouse has lower liver glucokinase and GKRP protein similar to human liver homozygous for rs1260326-446 L. 3. The diet-challenged P446L mouse has lower blood glucose, raised blood cholesterol and altered hepatic cholesterol homeostasis consistent with relative glucokinase-to-GKRP excess, but not raised blood triglycerides.
Conclusions: Mouse GKRP phenocopies the human GKRP:P446 > L substitution despite the higher affinity for glucokinase of human GKRP. The diet-challenged P446L mouse replicates several traits found in association with the rs1260326 locus on chromosome 2 including raised blood cholesterol, lower blood glucose and lower liver glucokinase and GKRP protein but not raised blood triglycerides.
Keywords: Blood cholesterol; Fatty liver; Glucokinase; Glucose metabolism; Liver; Type 2 diabetes.
Copyright © 2023 The Authors. Published by Elsevier GmbH.. All rights reserved.