Background: Atrioventricular block requiring permanent pacemaker (PPM) implantation is an important complication of transcatheter aortic valve replacement (TAVR). Application of machine learning could potentially be used to predict pre-procedural risk for PPM.
Aim: To apply machine learning to be used to predict pre-procedural risk for PPM.
Methods: A retrospective study of 1200 patients who underwent TAVR (January 2014-December 2017) was performed. 964 patients without prior PPM were included for a 30-d analysis and 657 patients without PPM requirement through 30 d were included for a 1-year analysis. After the exclusion of variables with near-zero variance or ≥ 50% missing data, 167 variables were included in the random forest gradient boosting algorithm (GBM) optimized using 5-fold cross-validations repeated 10 times. The receiver operator curve (ROC) for the GBM model and PPM risk score models were calculated to predict the risk of PPM at 30 d and 1 year.
Results: Of 964 patients included in the 30-d analysis without prior PPM, 19.6% required PPM post-TAVR. The mean age of patients was 80.9 ± 8.7 years. 42.1 % were female. Of 657 patients included in the 1-year analysis, the mean age of the patients was 80.7 ± 8.2. Of those, 42.6% of patients were female and 26.7% required PPM at 1-year post-TAVR. The area under ROC to predict 30-d and 1-year risk of PPM for the GBM model (0.66 and 0.72) was superior to that of the PPM risk score (0.55 and 0.54) with a P value < 0.001.
Conclusion: The GBM model has good discrimination and calibration in identifying patients at high risk of PPM post-TAVR.
Keywords: Machine learning; Permanent pacemaker implantation; Transcatheter aortic valve replacement.
©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.