Blocking of nutrient uptake and amino acid biosynthesis are considered potential targets for next-generation antifungal drugs against pathogenic fungi, including Cryptococcus neoformans. In this regard, the sulfate assimilation pathway is particularly attractive, as it is only present in eukaryotes such as plants and fungi, yet not in mammals. Here, we demonstrated that the adenylyl sulfate kinase (Met14) in the sulfate assimilation pathway is not essential yet is required for the viability of C. neoformans due to its involvement in biosynthesis of two sulfur-containing amino acids, cysteine and methionine. Met14-dependent cysteine and methionine biosynthesis was found to significantly contribute to a diverse range of pathobiological processes in C. neoformans. Met14-dependent cysteine rather than methionine biosynthesis was also found to play pivotal roles in cell growth and tolerance to environmental stresses and antifungal drugs. In contrast, the Met14-dependent methionine biosynthesis was found to be more important than cysteine biosynthesis for the production of major cryptococcal virulence factors of melanin pigments and polysaccharide capsules. Finally, we also found that despite its attenuated virulence in an insect model, Galleria mellonella, the met14Δ mutant yielded no difference in virulence in a murine model of systemic cryptococcosis. Hence, clinical inhibition of Met14-dependent amino acid biosynthetic pathways may not be advantageous for the treatment of systemic cryptococcosis. IMPORTANCE Current antifungal drugs have several limitations, such as drug resistance, severe side effects, and a narrow spectrum. Therefore, novel antifungal targets are urgently needed. To this end, fungal sulfur amino acid biosynthetic pathways are considered potential targets for development of new antifungal agents. Here, we demonstrated that Met14 in the sulfate assimilation pathway promotes growth, stress response, and virulence factor production in C. neoformans via synthesis of sulfur-containing amino acids methionine and cysteine. Met14-dependent cysteine rather than methionine synthesis was found to be critical for growth and stress responses, whereas Met14-dependent methionine synthesis was more important for the production of antiphagocytic capsules and antioxidant melanin in C. neoformans. Surprisingly, deletion of the MET14 gene was found to attenuate cryptococcal virulence in an insect model, yet not in a murine model. Collectively, our results showed that Met14-dependent cysteine and methionine biosynthesis play roles that are distinct from each other in C. neoformans. Moreover, Met14 is unlikely to be a suitable anticryptococcal drug target.
Keywords: Met14; Met3; fungal pathogens; sulfate assimilation pathway; sulfur amino acids; virulence.