Mechanosensitive mTORC1 signaling maintains lymphatic valves

J Cell Biol. 2023 Jun 5;222(6):e202207049. doi: 10.1083/jcb.202207049. Epub 2023 Apr 10.

Abstract

Homeostatic maintenance and repair of lymphatic vessels are essential for health. We investigated the dynamics and the molecular mechanisms of lymphatic endothelial cell (LEC) renewal in adult mesenteric quiescent lymphatic vasculature using label-retention, lineage tracing, and cell ablation strategies. Unlike during development, adult LEC turnover and proliferation was confined to the valve regions of collecting vessels, with valve cells displaying the shortest lifespan. Proliferating valve sinus LECs were the main source for maintenance and repair of lymphatic valves. We identified mechanistic target of rapamycin complex 1 (mTORC1) as a mechanoresponsive pathway activated by fluid shear stress in LECs. Depending on the shear stress level, mTORC1 activity drives division of valve cells or dictates their mechanic resilience through increased protein synthesis. Overactivation of lymphatic mTORC1 in vivo promoted supernumerary valve formation. Our work provides insights into the molecular mechanisms of maintenance of healthy lymphatic vascular system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Endothelial Cells / metabolism
  • Homeostasis
  • Lymphangiogenesis / genetics
  • Lymphatic Vessels* / metabolism
  • Mechanistic Target of Rapamycin Complex 1* / metabolism
  • Signal Transduction

Substances

  • Mechanistic Target of Rapamycin Complex 1