Objectives: Suicide presents a major public health challenge worldwide, affecting people across the lifespan. While previous studies revealed strong associations between Social Determinants of Health (SDoH) and suicide deaths, existing evidence is limited by the reliance on structured data. To resolve this, we aim to adapt a suicide-specific SDoH ontology (Suicide-SDoHO) and use natural language processing (NLP) to effectively identify individual-level SDoH-related social risks from death investigation narratives.
Materials and methods: We used the latest National Violent Death Report System (NVDRS), which contains 267 804 victim suicide data from 2003 to 2019. After adapting the Suicide-SDoHO, we developed a transformer-based model to identify SDoH-related circumstances and crises in death investigation narratives. We applied our model retrospectively to annotate narratives whose crisis variables were not coded in NVDRS. The crisis rates were calculated as the percentage of the group's total suicide population with the crisis present.
Results: The Suicide-SDoHO contains 57 fine-grained circumstances in a hierarchical structure. Our classifier achieves AUCs of 0.966 and 0.942 for classifying circumstances and crises, respectively. Through the crisis trend analysis, we observed that not everyone is equally affected by SDoH-related social risks. For the economic stability crisis, our result showed a significant increase in crisis rate in 2007-2009, parallel with the Great Recession.
Conclusions: This is the first study curating a Suicide-SDoHO using death investigation narratives. We showcased that our model can effectively classify SDoH-related social risks through NLP approaches. We hope our study will facilitate the understanding of suicide crises and inform effective prevention strategies.
Keywords: natural language processing; social determinants of health; social risks; suicide.
© The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: [email protected].