Introduction: Benzonatate is an FDA-approved antitussive agent that resembles tetracaine, procaine, and cocaine in its chemical structure. Based on structural similarities to known local anesthetics and recent findings of benzonatate exerting local anesthetic-like effects on voltage-gated sodium channels in vitro, we hypothesized that benzonatate will act as a local anesthetic to yield peripheral nerve blockade.
Methods: Benzonatate was injected at the sciatic nerve of Sprague-Dawley rats. Sensory and motor blockade were assessed using a modified hot plate test and a weight-bearing test, respectively. Additionally, the effect of co-injection with tetrodotoxin and Tween 80 (a chemical permeation enhancer) was examined. Myotoxicity of benzonatate was assessed in vivo by histological analysis.
Results: Benzonatate produced a concentration-dependent sensory and motor nerve blockade with no appreciable systemic effects. Co-injection with tetrodotoxin or Tween 80 produced prolongation of sensory nerve blockade. Histologic assessment showed significant inflammation and myotoxicity from benzonatate injection, even at low concentrations.
Conclusion: This study demonstrates that benzonatate does act as a local anesthetic at the peripheral nerve, with sensory and motor nerve blockade. Benzonatate interacts with tetrodotoxin and Tween 80 to prolong nerve blockade. However, benzonatate causes significant myotoxicity, even at subtherapeutic concentrations.
Copyright: © 2023 McGuire et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.