Non-Laboratory-Based Risk Prediction Tools for Undiagnosed Pre-Diabetes: A Systematic Review

Diagnostics (Basel). 2023 Mar 29;13(7):1294. doi: 10.3390/diagnostics13071294.

Abstract

Early detection of pre-diabetes (pre-DM) can prevent DM and related complications. This review examined studies on non-laboratory-based pre-DM risk prediction tools to identify important predictors and evaluate their performance. PubMed, Embase, MEDLINE, CINAHL were searched in February 2023. Studies that developed tools with: (1) pre-DM as a prediction outcome, (2) fasting/post-prandial blood glucose/HbA1c as outcome measures, and (3) non-laboratory predictors only were included. The studies' quality was assessed using the CASP Clinical Prediction Rule Checklist. Data on pre-DM definitions, predictors, validation methods, performances of the tools were extracted for narrative synthesis. A total of 6398 titles were identified and screened. Twenty-four studies were included with satisfactory quality. Eight studies (33.3%) developed pre-DM risk tools and sixteen studies (66.7%) focused on pre-DM and DM risks. Age, family history of DM, diagnosed hypertension and obesity measured by BMI and/or WC were the most common non-laboratory predictors. Existing tools showed satisfactory internal discrimination (AUROC: 0.68-0.82), sensitivity (0.60-0.89), and specificity (0.50-0.74). Only twelve studies (50.0%) had validated their tools externally, with a variance in the external discrimination (AUROC: 0.31-0.79) and sensitivity (0.31-0.92). Most non-laboratory-based risk tools for pre-DM detection showed satisfactory performance in their study populations. The generalisability of these tools was unclear since most lacked external validation.

Keywords: early detection; non-laboratory-based; pre-diabetes; risk prediction tools.

Publication types

  • Review