Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate

Int J Mol Sci. 2023 Apr 3;24(7):6675. doi: 10.3390/ijms24076675.

Abstract

This paper focuses on the surface modification of the Ti-6Al-4V alloy substrate via a-C:H:SiOx coating deposition. Research results concern the a-C:H:SiOx coating structure, investigated using transmission electron microscopy and in vitro endothelization to study the coating. Based on the analysis of the atomic radial distribution function, a model is proposed for the atomic short-range order structure of the a-C:H:SiOx coating, and chemical bonds (C-O, C-C, Si-C, Si-O, and Si-Si) are identified. It is shown that the a-C:H:SiOx coating does not possess prolonged cytotoxicity in relation to EA.hy926 endothelial cells. In vitro investigations showed that the adhesion, cell number, and nitric oxide production by EA.hy926 endothelial cells on the a-C:H:SiOx-coated Ti-6Al-4V substrate are significantly lower than those on the uncoated surface. The findings suggest that the a-C:H:SiOx coating can reduce the risk of endothelial cell hyperproliferation on implants and medical devices, including mechanical prosthetic heart valves, endovascular stents, and mechanical circulatory support devices.

Keywords: a-C:H:SiOx coating; adhesion; cell number; endothelial cells EA.hy926; in vitro cytotoxicity; local atomic order; nitric oxide production.

MeSH terms

  • Alloys / chemistry
  • Endothelial Cells*
  • Nitric Oxide*
  • Prostheses and Implants
  • Surface Properties
  • Titanium / chemistry

Substances

  • titanium alloy (TiAl6V4)
  • Nitric Oxide
  • Titanium
  • Alloys