MOF-Derived Ultrathin NiCo-S Nanosheet Hybrid Array Electrodes Prepared on Nickel Foam for High-Performance Supercapacitors

Nanomaterials (Basel). 2023 Mar 30;13(7):1229. doi: 10.3390/nano13071229.

Abstract

At present, binary bimetallic sulfides are widely studied in supercapacitors due to their high conductivity and excellent specific capacitance (SC). In this article, NiCo-S nanostructured hybrid electrode materials were prepared on nickel foam (NF) by using a binary metal-organic skeleton as the sacrificial template via a two-step hydrothermal method. Comparative analysis was carried out with Ni-S and Co-S in situ on NF to verify the excellent electrochemical performance of bimetallic sulfide as an electrode material for supercapacitors. NiCo-S/NF exhibited an SC of 2081 F∙g-1 at 1 A∙g-1, significantly superior to Ni-S/NF (1520.8 F∙g-1 at 1 A∙g-1) and Co-S/NF (1427 F∙g-1 at 1 A∙g-1). In addition, the material demonstrated better rate performance and cycle stability, with a specific capacity retention rate of 58% at 10 A∙g-1 than at 1 A∙g-1, and 75.7% of capacity was retained after 5000 cycles. The hybrid supercapacitor assembled by NiCo-S//AC exhibited a high energy density of 25.58 Wh∙kg-1 at a power density of 400 W∙kg-1.

Keywords: MOF; self-sacrificing template; supercapacitor; transition metal sulfides.