Cognitive Mechanisms Underlying Recursive Pattern Processing in Human Adults

Cogn Sci. 2023 Apr;47(4):e13273. doi: 10.1111/cogs.13273.

Abstract

The capacity to generate recursive sequences is a marker of rich, algorithmic cognition, and perhaps unique to humans. Yet, the precise processes driving recursive sequence generation remain mysterious. We investigated three potential cognitive mechanisms underlying recursive pattern processing: hierarchical reasoning, ordinal reasoning, and associative chaining. We developed a Bayesian mixture model to quantify the extent to which these three cognitive mechanisms contribute to adult humans' performance in a sequence generation task. We further tested whether recursive rule discovery depends upon relational information, either perceptual or semantic. We found that the presence of relational information facilitates hierarchical reasoning and drives the generation of recursive sequences across novel depths of center embedding. In the absence of relational information, the use of ordinal reasoning predominates. Our results suggest that hierarchical reasoning is an important cognitive mechanism underlying recursive pattern processing and can be deployed across embedding depths and relational domains.

Keywords: Bayesian modeling; Hierarchical reasoning; Logic; Pattern recognition; Rule-learning.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Bayes Theorem
  • Cognition*
  • Humans
  • Problem Solving*
  • Semantics