Di(2-ethylhexyl) phthalate (DEHP) early exposure leads to immature testicular injury, and we aimed to utilize single-cell RNA (scRNA) sequencing to comprehensively assess the toxic effect of DEHP on testicular development. Therefore, we gavaged pregnant C57BL/6 mice with 750 mg/kg body weight DEHP from gestational day 13.5 to delivery and performed scRNA sequencing of neonatal testes at postnatal day 5.5. The results revealed the gene expression dynamics in testicular cells. DEHP disrupted the developmental trajectory of germ cells and the balance between the self-renewal and differentiation of spermatogonial stem cells. Additionally, DEHP caused an abnormal developmental trajectory, cytoskeletal damage and cell cycle arrest in Sertoli cells; disrupted the metabolism of testosterone in Leydig cells; and disturbed the developmental trajectory in peritubular myoid cells. Elevated oxidative stress and excessive apoptosis mediated by p53 were observed in almost all testicular cells. The intercellular interactions among four cell types were altered, and biological processes related to glial cell line-derived neurotrophic factor (GDNF), transforming growth factor-β (TGF-β), NOTCH, platelet-derived growth factor (PDGF) and WNT signaling pathways were enriched after DEHP treatment. These findings systematically describe the damaging effects of DEHP on the immature testes and provide substantial novel insights into the reproductive toxicity of DEHP.
Keywords: DEHP; Male germ cell; Single-cell transcriptome; Spermatogenic niche.
Copyright © 2023 Elsevier Ltd. All rights reserved.