Statins enhances antitumor effect of oxaliplatin in KRAS-mutated colorectal cancer cells and inhibits oxaliplatin-induced neuropathy

Cancer Cell Int. 2023 Apr 17;23(1):73. doi: 10.1186/s12935-023-02884-z.

Abstract

Background: KRAS mutations are fraught with the progression of colorectal cancer and resistance to chemotherapy. There are pathways such as extracellular regulated protein kinase 1/2 (ERK1/2) and Akt downstream and farnesylation and geranylgeranylation upstream that are activated upon mutated KRAS. Previous studies have shown that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are effective to treat KRAS mutated colorectal cancer cells. Increased doses of oxaliplatin (L-OHP), a well-known alkylating chemotherapeutic drug, causes side effects such as peripheral neuropathy due to ERK1/2 activation in spinal cords. Hence, we examined the combinatorial therapeutic efficacy of statins and L-OHP to reduce colorectal cancer cell growth and abrogate neuropathy in mice.

Methods: Cell survival and confirmed apoptosis was assessed using WST-8 assay and Annexin V detection kit. Detection of phosphorylated and total proteins was analyzed the western blotting. Combined effect of simvastatin and L-OHP was examined the allograft mouse model and L-OHP-induced neuropathy was assessed using cold plate and von Frey filament test.

Results: In this study, we examined the effect of combining statins with L-OHP on induction of cell death in colorectal cancer cell lines and improvement of L-OHP-induced neuropathy in vivo. We demonstrated that combined administration with statins and L-OHP significantly induced apoptosis and elevated the sensitivity of KRAS-mutated colorectal cancer cells to L-OHP. In addition, simvastatin suppressed KRAS prenylation, thereby enhancing antitumor effect of L-OHP through downregulation of survivin, XIAP, Bcl-xL, and Bcl-2, and upregulation of p53 and PUMA via inhibition of nuclear factor of κB (NF-κB) and Akt activation, and induction of c-Jun N-terminal kinase (JNK) activation in KRAS-mutated colorectal cancer cells. Moreover, simvastatin enhanced the antitumor effects of L-OHP and suppressed L-OHP-induced neuropathy via ERK1/2 activation in vivo.

Conclusion: Therefore, statins may be therapeutically useful as adjuvants to L-OHP in KRAS-mutated colorectal cancer and may also be useful in the treatment of L-OHP-induced neuropathy.

Keywords: Colorectal cancer; KRAS; Neuropathy; Oxaliplatin; Statin.