Converting ubiquitous ambient low-grade thermal energy into electricity is of great significance for tackling the fossil energy shortage and environmental crisis but poses a considerable challenge. Here, a novel thermal-driven triboelectric nanogenerator (TD-TENG) is developed, which utilizes a bimetallic beam with a bi-stable dynamic feature to induce continuous mechanical oscillations, and the mechanical motion is then converted into electric power using a contact-separation TENG. The thermal process inside the device is systematically investigated and effective thermal management is conducted accordingly. After optimization, the TD-TENG can produce a power density of 323.9 mW m-2 at 59.5 °C, obtaining the highest record of TENG-based thermal energy harvesters. Besides, the first prototype of TENG-based solar thermal harvester is successfully demonstrated, with a power density of 364.4 mW m-2 . Moreover, the TD-TENG can harvest and dissipate the heat at the same time, exhibiting great potential in over-heated electronics protection as well as architectural energy conservation. Most importantly, the operation temperature range of the TD-TENG is tunable by adjusting the bimetal parameters, allowing the device a wide and flexible working thermal gradient. These unique properties validate the TD-TENG is a simple, feasible, cost-effective, and high-efficient low-grade thermal energy harvester.
Keywords: bimetallic beams; low-grade thermal energy; solar thermal energy; triboelectric nanogenerators.
© 2023 Wiley-VCH GmbH.