Prediction models as decision-support tools for virtual patient-specific quality assurance of helical tomotherapy plans

Phys Imaging Radiat Oncol. 2023 Mar 28:26:100435. doi: 10.1016/j.phro.2023.100435. eCollection 2023 Apr.

Abstract

Background and purpose: Prediction models may be reliable decision-support tools to reduce the workload associated with the measurement-based patient-specific quality assurance (PSQA) of radiotherapy plans. This study compared the effectiveness of three different models based on delivery parameters, complexity metrics and sinogram radiomics features as tools for virtual-PSQA (vPSQA) of helical tomotherapy (HT) plans.

Materials and methods: A dataset including 881 RT plans created with two different treatment planning systems (TPSs) was collected. Sixty-five indicators including 12 delivery parameters (DP) and 53 complexity metrics (CM) were extracted using a dedicated software library. Additionally, 174 radiomics features (RF) were extracted from the plans' sinograms. Three groups of variables were formed: A (DP), B (DP + CM) and C (DP + CM + RF). Regression models were trained to predict the gamma index passing rate P R γ (3%G, 2mm) and the impact of each group of variables was investigated. ROC-AUC analysis measured the ability of the models to accurately discriminate between 'deliverable' and 'non-deliverable' plans.

Results: The best performance was achieved by model C which allowed detecting around 16% and 63% of the 'deliverable' plans with 100% sensitivity for the two TPSs, respectively. In a real clinical scenario, this would have decreased the whole PSQA workload by approximately 35%.

Conclusions: The combination of delivery parameters, complexity metrics and sinogram radiomics features allows for robust and reliable PSQA gamma passing rate predictions and high-sensitivity detection of a fraction of deliverable plans for one of the two TPSs. Promising yet improvable results were obtained for the other one. The results foster a future adoption of vPSQA programs for HT.

Keywords: Complexity metrics; Helical tomotherapy; Machine learning in radiotherapy; PSQA; Radiomics features; Virtual patient-specific quality assurance.