Hydrogen, oxygen, carbon, and nitrogen isotopes derived from three different strains of silkworms at different life stages involved in silkworm rearing, were measured to understand the fractionation characteristics of stable isotopes at different stages of silkworm development, and to trace the movement of these isotopes from food to larva to excrement and finally to silk. We found that silkworm strain had little effect on δ2H, δ18O and δ13C values. However, a large difference was found in the δ15N levels of newly-hatched silkworms between Jingsong Haoyue and Hua Kang No. 3 orthogonal strains, suggesting that the mating and egg laying differences may result in an inconsistent kinetic nitrogen isotope fractionation. The δ13C values of silkworm pupae and silkworm cocoon also displayed significant differences, suggesting that heavy carbon isotopes are greatly fractionated from the larva to the silk during cocoon formation. Overall, these results may be used to clarify the relationship between isotope fractionation and the ecological process of the Bombyx mori and expand our ability to resolve stable isotope anomalies at a small regional-scale level.
© 2023. The Author(s).