Objective: In this study, we aimed to establish the causal effects of lowering sclerostin, target of the antiosteoporosis drug romosozumab, on atherosclerosis and its risk factors.
Methods: A genome-wide association study meta-analysis was performed of circulating sclerostin levels in 33,961 European individuals. Mendelian randomization (MR) was used to predict the causal effects of sclerostin lowering on 15 atherosclerosis-related diseases and risk factors.
Results: We found that 18 conditionally independent variants were associated with circulating sclerostin. Of these, 1 cis signal in SOST and 3 trans signals in B4GALNT3, RIN3, and SERPINA1 regions showed directionally opposite signals for sclerostin levels and estimated bone mineral density. Variants with these 4 regions were selected as genetic instruments. MR using 5 correlated cis-SNPs suggested that lower sclerostin increased the risk of type 2 diabetes mellitus (DM) (odds ratio [OR] 1.32 [95% confidence interval (95% CI) 1.03-1.69]) and myocardial infarction (MI) (OR 1.35 [95% CI 1.01-1.79]); sclerostin lowering was also suggested to increase the extent of coronary artery calcification (CAC) (β = 0.24 [95% CI 0.02-0.45]). MR using both cis and trans instruments suggested that lower sclerostin increased hypertension risk (OR 1.09 [95% CI 1.04-1.15]), but otherwise had attenuated effects.
Conclusion: This study provides genetic evidence to suggest that lower levels of sclerostin may increase the risk of hypertension, type 2 DM, MI, and the extent of CAC. Taken together, these findings underscore the requirement for strategies to mitigate potential adverse effects of romosozumab treatment on atherosclerosis and its related risk factors.
© 2023 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.