Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics

J Proteome Res. 2023 Jun 2;22(6):1868-1880. doi: 10.1021/acs.jproteome.2c00850. Epub 2023 Apr 25.

Abstract

Phosphotyrosine (pY) enrichment is critical for expanding the fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies. R2-pY can handle up to 96 samples in parallel, requires 2 days to go from cell lysate to mass spectrometry injections, and results in global proteomic, phosphoproteomic, and tyrosine-specific phosphoproteomic samples. We benchmark the method on HeLa cells stimulated with pervanadate and serum and report over 4000 unique pY sites from 1 mg of peptide input, strong reproducibility between replicates, and phosphopeptide enrichment efficiencies above 99%. R2-pY extends our previously reported R2-P2 proteomic and global phosphoproteomic sample preparation framework, opening the door to large-scale studies of pY signaling in concert with global proteome and phosphoproteome profiling.

Keywords: affinity purification; automated; high-throughput; phosphoproteomics; phosphorylation signaling; phosphotyrosine; sample preparation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • HeLa Cells
  • Humans
  • Peptides* / chemistry
  • Phosphopeptides / analysis
  • Phosphorylation
  • Phosphotyrosine / metabolism
  • Proteome / analysis
  • Proteomics* / methods
  • Reproducibility of Results

Substances

  • Phosphotyrosine
  • Peptides
  • Phosphopeptides
  • Proteome