Objective: To provide quantitative magnetic resonance imaging (MRI) super-resolution-based three-dimensional volumetric reference data on the growth dynamics of the ganglionic eminence (GE) relative to cortical and total fetal brain volumes (TBV).
Methods: This was a retrospective study of fetuses without structural central nervous system anomalies or other confounding comorbidities that were referred for fetal MRI. Super-resolution reconstructions of 1.5- and 3-Tesla T2-weighted images were generated. Semiautomatic segmentation of TBV and cortical volume and manual segmentation of the GE were performed. Cortical volume, TBV and GE volume were quantified and three-dimensional reconstructions were generated to visualize the developmental dynamics of the GE.
Results: Overall, 120 fetuses that underwent 127 MRI scans at a mean gestational age of 27.23 ± 4.81 weeks (range, 20-37 weeks) were included. In the investigated gestational-age range, GE volume ranged from 74.88 to 808.75 mm3 and was at its maximum at 21 gestational weeks, followed by a linear decrease (R2 = 0.559) throughout the late second and third trimesters. A pronounced reduction in GE volume relative to cortical volume and TBV occurred in the late second trimester, with a decline in this reduction observed in the third trimester (R2 = 0.936 and 0.924, respectively). Three-dimensional rendering allowed visualization of a continuous change in the shape and size of the GE throughout the second and third trimesters.
Conclusions: Even small compartments of the fetal brain, which are not easily accessible by standardized two-dimensional modalities, can be assessed precisely by super-resolution processed fetal MRI. The inverse growth dynamics of GE volume compared with TBV and cortical volume reflects the transitory nature and physiological involution of this (patho-)physiologically important brain structure. The normal development and involution of the GE is mandatory for normal cortical development. Pathological changes of this transient organ precede impairment of cortical structures, and their detection may allow an earlier diagnosis of such anomalies. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Keywords: cortex; fetal brain; fetal neurodevelopment; ganglionic eminence; magnetic resonance imaging; total brain volume.
© 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.