Due to the beneficial nutritional and medicinal characteristics of bee honey and thymol oil as antioxidants, anti-inflammatory agents, and antibacterial agents, they have been used since ancient times. The current study aimed to construct a ternary nanoformulation (BPE-TOE-CSNPs NF) through the immobilization of the ethanolic extract of bee pollen (BPE) with thymol oil extract (TOE) into the matrix of chitosan nanoparticles (CSNPs). The antiproliferative activity of new NF (BPE-TOE-CSNPs) against HepG2 and MCF-7 cells was investigated. The BPE-TOE-CSNPs showed significant inhibitory activity for the production of the inflammatory cytokines in HepG2 and MCF-7, with p < 0.001 for both TNF-α and IL6. Moreover, the encapsulation of the BPE and TOE in CSNPs increased the efficacy of the treatment and the induction of valuable arrests for the S phase of the cell cycle. In addition, the new NF has a great capacity to trigger apoptotic mechanisms through caspase-3 expression upregulation in cancer cells by two-fold among HepG2 cell lines and nine-fold among MCF-7 which appeared to be more susceptible to the nanoformulation. Moreover, the nanoformulated compound has upregulated the expression of caspase-9 and P53 apoptotic mechanisms. This NF may shed light on its pharmacological actions by blocking specific proliferative proteins, inducing apoptosis, and interfering with the DNA replication process.
Keywords: Anti-inflammatory and anticancer; Bee pollen-thymol oil-chitosan nanoparticles; Flow cytometry and Western blotting analyses.
Copyright © 2023 Elsevier B.V. All rights reserved.