Protective Effects of Nanoceria against Mitochondrial Dysfunction and Angiotensin II-Induced Hypertrophy in H9c2 Cardiomyoblasts

Antioxidants (Basel). 2023 Apr 4;12(4):877. doi: 10.3390/antiox12040877.

Abstract

Mitochondrial dysfunction triggered by increased reactive oxygen species (ROS) generation is involved in the pathogenesis and development of cardiac hypertrophy. Nanoceria (cerium oxide nanoparticle) has powerful ROS-scavenging properties and is considered a potential therapeutic option for curbing ROS-related disorders. Here, we explored the signaling mechanism underlying the protective effects of nanoceria against angiotensin (Ang) II-stimulated pathological response in H9c2 cardiomyoblasts. Our data revealed that pretreatment of H9c2 cardiomyoblasts with nanoceria significantly prevented Ang II-stimulated generation of intracellular ROS, aberrant expression of pro-inflammatory cytokines, and hypertrophy markers. Nanoceria pretreatment increased the mRNA levels of genes regulating the cellular antioxidant defense system (SOD2, MnSOD, CAT) in Ang II-treated cells. Furthermore, nanoceria restored mitochondrial function by decreasing mitochondrial ROS, increasing mitochondrial membrane potential (MMP), and promoting the mRNA expression of genes associated with mitochondrial biogenesis (PGC-1α, TFAM, NRF1, and SIRT3) and mitochondrial fusion (MFN2, OPA1). Collectively, these findings demonstrate the protective effects of nanoceria against Ang II-mediated mitochondrial dysfunction and pathological hypertrophy in H9c2 cells.

Keywords: H9c2 cardiomyoblasts; angiotensin II; hypertrophy; mitochondrial dysfunction; nano-biomaterial; nanoceria.