Reparameterizable Multibranch Bottleneck Network for Lightweight Image Super-Resolution

Sensors (Basel). 2023 Apr 13;23(8):3963. doi: 10.3390/s23083963.

Abstract

Deployment of deep convolutional neural networks (CNNs) in single image super-resolution (SISR) for edge computing devices is mainly hampered by the huge computational cost. In this work, we propose a lightweight image super-resolution (SR) network based on a reparameterizable multibranch bottleneck module (RMBM). In the training phase, RMBM efficiently extracts high-frequency information by utilizing multibranch structures, including bottleneck residual block (BRB), inverted bottleneck residual block (IBRB), and expand-squeeze convolution block (ESB). In the inference phase, the multibranch structures can be combined into a single 3 × 3 convolution to reduce the number of parameters without incurring any additional computational cost. Furthermore, a novel peak-structure-edge (PSE) loss is proposed to resolve the problem of oversmoothed reconstructed images while significantly improving image structure similarity. Finally, we optimize and deploy the algorithm on the edge devices equipped with the rockchip neural processor unit (RKNPU) to achieve real-time SR reconstruction. Extensive experiments on natural image datasets and remote sensing image datasets show that our network outperforms advanced lightweight SR networks regarding objective evaluation metrics and subjective vision quality. The reconstruction results demonstrate that the proposed network can achieve higher SR performance with a 98.1 K model size, which can be effectively deployed to edge computing devices.

Keywords: PSE loss; edge computing device; lightweight image super-resolution; reparameterizable multibranch bottleneck module.