Bacterial fish disease outbreaks are a key concern for aquaculture. Complementary feed additives such as immunostimulants can serve as an ideal solution for disease prevention. Herein, we scrutinized the efficacy of exopolysaccharides (EPSs) from probiotic Bacillus licheniformis and EPS-mediated zinc oxide nanoparticles (EPS-ZnO NPs) for a diet to evaluate growth parameters, antioxidant enzyme activities, and immune stimulation together with disease resistance against Aeromonas hydrophila and Vibrio parahaemolyticus in Mozambique tilapia Oreochromis mossambicus. Fish were separated into seven groups, with six experimental groups fed with EPS and EPS-ZnO NPs at 2, 5, and 10 mg/g and a control fed a basal diet. The fish ingesting feed supplemented with EPS and EPS-ZnO NPs at 10 mg/g showed improved growth performance. Cellular and humoral-immunological parameters were tested in serum and mucus after 15 and 30 days of feeding. These parameters were substantially enriched with a 10 mg/g diet (p < 0.05) of EPS and EPS-ZnO NPs in comparison with the control. Furthermore, the EPS and EPS-ZnO NP supplemental diet actively enhanced the antioxidant response (glutathione peroxidase, superoxide dismutase, and catalase). In addition, the supplemental diet of EPS and EPS-ZnO NPs lowered the death rate and improved the disease resistance of O. mossambicus following assessment with A. hydrophila and V. parahaemolyticus at 50 µL. Hence, the overall results suggest that the supplemental diet of EPS and EPS-ZnO NPs might be used to ensure aquaculture feed additives.
Keywords: Bacillus licheniformis; antioxidant response; aquatic pathogens; growth performance; immune parameters; zinc nanoparticle.