Characterization of immune exhaustion and suppression in the tumor microenvironment of splenic marginal zone lymphoma

Leukemia. 2023 Jul;37(7):1485-1498. doi: 10.1038/s41375-023-01911-2. Epub 2023 Apr 28.

Abstract

The role of the tumor microenvironment (TME) and intratumoral T cells in splenic marginal zone lymphoma (sMZL) is largely unknown. In the present study, we evaluated 36 sMZL spleen specimens by single cell analysis to gain a better understanding of the TME in sMZL. Using mass cytometry (CyTOF), we observed that the TME in sMZL is distinct from that of control non-malignant reactive spleen (rSP). We found that the number of TFH cells varied greatly in sMZL, ICOS+ TFH cells were more abundant in sMZL than rSP, and TFH cells positively correlated with increased numbers of memory B cells. Treg cell analysis revealed that TIGIT+ Treg cells are enriched in sMZL and correlate with suppression of TH17 and TH22 cells. Intratumoral CD8+ T cells were comprised of subsets of short-lived, exhausted and late-stage differentiated cells, thereby functionally impaired. We observed that T-cell exhaustion was present in sMZL and TIM-3 expression on PD-1low cells identified cells with severe immune dysfunction. Gene expression profiling by CITE-seq analysis validated this finding. Taken together, our data suggest that the TME as a whole, and T-cell population specifically, are heterogenous in sMZL and immune exhaustion is one of the major factors impairing T-cell function.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD8-Positive T-Lymphocytes / metabolism
  • Humans
  • Leukemia, Lymphocytic, Chronic, B-Cell*
  • Lymphoma*
  • Lymphoma, B-Cell, Marginal Zone* / genetics
  • Splenic Neoplasms* / genetics
  • Splenic Neoplasms* / metabolism
  • Splenic Neoplasms* / pathology
  • Tumor Microenvironment