Because of the threat of resistant Plasmodium sp., new orally active antimalarials are urgently needed. Inspired by the structure of ellagic acid, exhibiting potent in vivo and in vitro antiplasmodial effects, polyphenolic structures possessing a similar activity-safety profile were synthesized. Indeed, most exhibited a marked in vitro effect (IC50 < 4 μM) on resistant P. falciparum, without any detrimental effects reported during the toxicity assays (hemolysis, cytotoxicity, in vivo). In addition, they possessed a greater hydrosolubility (from 7 μM to 2.7 mM) compared to ellagic acid. Among them, 30 is the most promising for antimalarial purposes since it displayed a significant parasitaemia reduction after oral administration in mice (50 mg kg-1) compared to the orally ineffective ellagic acid. In conclusion, our investigations led to the identification of a promising scaffold, which could bring new insights for malaria treatment.
This journal is © The Royal Society of Chemistry.