Pulsed field ablation (PFA) has the potential to evolve into an efficient alternative to traditional RF ablation for atrial fibrillation treatment. However, achieving irreversible tissue electroporation is critical to suppressing arrhythmic pathways, raising the need for accurate lesion characterization. To understand the physics behind the tissue response PFA, we propose a quasi-dynamic model that quantifies tissue conductance at end-electroporation and identifies regions that have undergone fully irreversible electroporation (IRE). The model uses several parameters and numerically solves the electrical field diffusion into the tissue by iteratively updating the tissue conductance until equilibrium at end-electroporation. The model yields a steady-state tissue conductance map used to identify the irreversible lesion. We conducted numerical experiments mimicking a lasso catheter featuring nine 3-mm electrodes spaced circumferentially at 3.75 mm and fired sequentially using a 1500 V and 3000 V pulse amplitude. The IRE lesion region has a surface area and volume of 780 mm2 and 1411 mm3, respectively, at 1500 V, and 1178 mm2 and 2760 mm3, respectively, at 3000 V. Lesion discontinuity was observed at 5.0 mm depth with 1500 V, and 7.2 mm depth with 3000 V. This quasi-dynamic model yields tissue conductance maps, predicts irreversible lesion and lesion penumbra at end-electroporation, and confirms larger lesions with higher pulse amplitudes.