Amplification of a terahertz wave via stimulated Raman scattering

Opt Lett. 2023 May 1;48(9):2433-2436. doi: 10.1364/OL.484033.

Abstract

Extremely strong terahertz (THz) waves are desperately demanded for investigating nonlinear physics, spectroscopy, and imaging in the THz range. However, traditional crystal-/semiconductor-based THz sources have limitations of reaching extremely high amplitude due to the damage threshold of devices. Here, by introducing Raman amplification to the THz range, we propose a novel, to the best of our knowledge, scheme to amplify THz waves in plasma. A long-pulse CO2 pump laser transfers its energy to a multicycle, 10-THz seed in a two-step plasma. By one-dimensional simulations, a 0.87-GV/m, 1.2-ps-duration THz seed is amplified to 10 GV/m in a 5.7-mm-long plasma with an amplification efficiency approaching 1%. The method provides a new technology to manipulate the intensity of THz waves.