Intervertebral disc degeneration (IDD) is a leading cause of low back pain. The inflammatory responses caused by aberrant mechanical loading are one of the major factors leading to annulus fibrosus (AF) degeneration and IDD. Previous studies have suggested that moderate cyclic tensile strain (CTS) can regulate anti-inflammatory activities of AF cells (AFCs), and Yes-associated protein (YAP) as a mechanosensitive coactivator senses diverse types of biomechanical stimuli and translates them into biochemical signals controlling cell behaviors. However, it remains poorly understood whether and how YAP mediates the effect of mechanical stimuli on AFCs. In this study, we aimed to investigate the exact effects of different CTS on AFCs as well as the role of YAP signaling involving in it. Our results found that 5% CTS inhibited the inflammatory response and promoted cell growth through inhibiting the phosphorylation of YAP and nuclear localization of NF-κB, while 12% CTS had a significant proinflammatory effect with the inactivation of YAP activity and the activation of NF-κB signaling in AFCs. Furthermore, moderate mechanical stimulation may alleviate the inflammatory reaction of intervertebral discs through YAP-mediated suppression of NF-κB signaling in vivo. Therefore, moderate mechanical stimulation may serve as a promising therapeutic approach for the prevention and treatment of IDD.
Keywords: NF-κB; YAP; annulus fibrosus; anti-inflammation; cyclic tensile strain.
© 2023 Orthopaedic Research Society.