Enhanced adsorptive removal of hexavalent chromium in aqueous media using chitosan-modified biochar: Synthesis, sorption mechanism, and reusability

Environ Res. 2023 Aug 15;231(Pt 1):115982. doi: 10.1016/j.envres.2023.115982. Epub 2023 May 4.

Abstract

Hexavalent chromium (Cr(VI)) is deemed a priority contaminant owing to its carcinogenicity, teratogenicity, and mutagenicity towards flora and fauna. A novel Chitosan-modified Mimosa pigra biochar (CMPBC) was fabricated and the efficiency of Cr(VI) oxyanion removal in aqueous systems was compared with the pristine biochar. The instrumental characterization of X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) confirmed the amino modification of MPBC when treated with chitosan. Characteristic features of the Cr(VI) sorptive process by CMPBC and MPBC were examined by performing batch sorption studies. Experimental data suggested that sorption is heavily dependent on pH and the highest adsorption occurred at pH 3.0. The maximum adsorption capacity of CMPBC was 14.6 ± 1.07 mg g-1. It was further noted that the removal efficiency of CMPBC (92%) was considerably greater than that of MPBC (75%) when the solution pH, biochar dose, and initial concentration of Cr(VI) are 3.0, 1.0 g L-1 and 5.0 mg L-1 respectively. The kinetic data were best interpreted by the power function model (R2 = 0.97) suggesting a homogenous chemisorption process. The isotherm data for the removal of Cr(VI) by CMPBC was inferred well by Redlich Peterson (R2 = 0.96) and Temkin (R2 = 0.96) isotherms. Results of sorption-desorption regeneration cycles indicated that the Cr(VI) uptake by CMPBC is not fully reversible. The coexistence of Cr(VI) and Cr(III) on CMPBC was confirmed through the XPS analysis. The electrostatic attractions between cationic surface functionalities and Cr(VI) oxyanions, the partial reductive transformation of Cr(VI) species to Cr(III), as well as complexation of Cr(III) onto CMPBC were identified as the possible mechanisms of mitigation of Cr(VI) by CMPBC. The results and outcomes of this research suggest the possibility of utilizing the CMPBC as an easily available, environmentally sustainable, and inexpensive sorbent to decontaminate Cr(VI) from aqueous media.

Keywords: Chemical modification; Engineered biochar; Heavy metal; Sorption.

MeSH terms

  • Adsorption
  • Chitosan*
  • Chromium / analysis
  • Hydrogen-Ion Concentration
  • Kinetics
  • Spectroscopy, Fourier Transform Infrared
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • chromium hexavalent ion
  • biochar
  • Chitosan
  • Water Pollutants, Chemical
  • Chromium
  • Water