Many interventions that show promising results in preclinical development do not pass clinical tests. Part of this may be explained by poor animal-to-human translation. Using animal models with low predictability for humans is neither ethical nor efficient. If translational success shows variation between medical research fields, analyses of common practices in these fields could identify factors contributing to successful translation. We assessed translational success rates in medical research fields using two approaches: through literature and clinical trial registers. Literature: We comprehensively searched PubMed for pharmacology, neuroscience, cancer research, animal models, clinical trials, and translation. After screening, 117 review papers were included in this scoping review. Translational success rates were not different within pharmacology (72%), neuroscience (62%), and cancer research (69%). Clinical trials: The fraction of phase-2 clinical trials with a positive outcome was used as a proxy (i.e., an indirect resemblance measure) for translational success. Trials were retrieved from the WHO trial register and categorized into medical research fields following the international classification of disease (ICD-10). Of the phase-2 trials analyzed, 65.2% were successful. Fields with the highest success rates were disorders of lipoprotein metabolism (86.0%) and epilepsy (85.0%). Fields with the lowest success rates were schizophrenia (45.4%) and pancreatic cancer (46.0%). Our combined analyses suggest relevant differences in success rates between medical research fields. Based on the clinical trials, comparisons of practice, e.g., between epilepsy and schizophrenia, might identify factors that influence translational success.
Keywords: animal experiments; animal-to-human translation; clinical trials; systematic review.