Systemic changes in cell size throughout the body of Drosophila melanogaster associated with mutations in molecular cell cycle regulators

Sci Rep. 2023 May 9;13(1):7565. doi: 10.1038/s41598-023-34674-y.

Abstract

Along with different life strategies, organisms have evolved dramatic cellular composition differences. Understanding the molecular basis and fitness effects of these differences is key to elucidating the fundamental characteristics of life. TOR/insulin pathways are key regulators of cell size, but whether their activity determines cell size in a systemic or tissue-specific manner awaits exploration. To that end, we measured cells in four tissues in genetically modified Drosophila melanogaster (rictorΔ2 and Mnt1) and corresponding controls. While rictorΔ2 flies lacked the Rictor protein in TOR complex 2, downregulating the functions of this element in TOR/insulin pathways, Mnt1 flies lacked the transcriptional regulator protein Mnt, weakening the suppression of downstream signalling from TOR/insulin pathways. rictorΔ2 flies had smaller epidermal (leg and wing) and ommatidial cells and Mnt1 flies had larger cells in these tissues than the controls. Females had consistently larger cells than males in the three tissue types. In contrast, dorsal longitudinal flight muscle cells (measured only in males) were not altered by mutations. We suggest that mutations in cell cycle control pathways drive the evolution of systemic changes in cell size throughout the body, but additional mechanisms shape the cellular composition of some tissues independent of these mutations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Cycle
  • Cell Size
  • Drosophila melanogaster* / genetics
  • Female
  • Insulins*
  • Male
  • Mutation
  • Transcription Factors / genetics

Substances

  • Transcription Factors
  • Insulins