Wellbeing is predominantly measured through surveys but is increasingly measured by analysing individuals' language on social media platforms using social media text mining (SMTM). To investigate whether the structure of wellbeing is similar across both data collection methods, we compared networks derived from survey items and social media language features collected from the same participants. The dataset was split into an independent exploration (n = 1169) and a final subset (n = 1000). After estimating exploration networks, redundant survey items and language topics were eliminated. Final networks were then estimated using exploratory graph analysis (EGA). The networks of survey items and those from language topics were similar, both consisting of five wellbeing dimensions. The dimensions in the survey- and SMTM-based assessment of wellbeing showed convergent structures congruent with theories of wellbeing. Specific dimensions found in each network reflected the unique aspects of each type of data (survey and social media language). Networks derived from both language features and survey items show similar structures. Survey and SMTM methods may provide complementary methods to understand differences in human wellbeing.
Keywords: language; natural language processing; psychological networks; social media; well-being; wellbeing.
© 2023 The Authors. Applied Psychology: Health and Well-Being published by John Wiley & Sons Ltd on behalf of International Association of Applied Psychology.