The public concern and governmental regulations on bisphenol A (BPA) have stimulated the development and production of alternative analogues to replace BPA in a myriad of applications. Given the endocrine disrupting activities of BPA and potentially other analogues, the present study investigated and compared the effects of neonatal exposure to BPA, BPB, BPE, BPF, and BPS on the genital development in male mice. Pups were injected subcutaneously on the right shoulder in the mornings of postnatal days P0.5, P2, P4, and P6, resulting in a low dose of 0.05 μg/g body weight (bw)/day and a high dose of 10 μg/g bw/day. Mice were sacrificed at predetermined time and evaluated for gene expression levels (3 days after birth or P3), steroid hormone levels (P5), and morphological changes (P21). The results demonstrated that BPA, BPB, BPE, or BPF significantly shortened glans penis length and anogenital distance, while BPS didn't. Testis weight and anogenital distance were also significantly affected by BPA, BPE or BPF. The results also revealed that bisphenol analogues exposure significantly reduced testosterone levels, and altered the expression levels of developmental genes networks in developing penis of mice. Our data demonstrate that selected bisphenol analogues may possess similar endocrine disrupting effects compared to BPA, and exposure to these analogues could affect reproductive development of male mice. This raises the concern on the environmental and health safety of bisphenol analogues applied as industrial BPA replacements.
Keywords: Analogues; BPA; Gene expression; Reproductive development; Steroid hormone.
Copyright © 2023. Published by Elsevier Ltd.