It is well-established that different detection modes are necessary for corresponding applications, which can effectively reduce matrix interference and improve the detection accuracy. Here, we reported a magnetic separation method based on recombinase polymerase amplification (RPA)-assisted clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a for dual-mode analysis of African swine fever virus (ASFV) genes, including colorimetry and fluorescence. The ASFV gene was selected as the initial RPA template to generate the amplicon. The RPA amplicon was then recognized by CRISPR-associated RNA (crRNA), activating the trans-cleavage activity of Cas12a and leading to the nonspecific cleavage of ssDNA as well as a significant release of alkaline phosphatase (ALP) in the ALP-ssDNA modified magnetic bead. The released ALP can catalyze para-nitrophenyl phosphate to generate para-nitrophenol, resulting in substantial changes in absorbance and fluorescence, both of which can be used for detection with the naked eye. This strategy allows the sensitive detection of ASFV DNA, with a 20 copies/mL detection limit; no cross-reactivity with other viruses was observed. A good linear relationship was obtained in serum. In addition, this sensor displayed 100% specificity and sensitivity for clinical sample analysis. This method integrates the high sensitivity of fluorescence with easy readout of colorimetry and enables a simple, low-cost, and highly sensitive dual-mode detection of viral nucleic acid, thereby providing a broad prospect for the practical application in the diagnosis of virus infection.