Signal peptide mimicry primes Sec61 for client-selective inhibition

Nat Chem Biol. 2023 Sep;19(9):1054-1062. doi: 10.1038/s41589-023-01326-1. Epub 2023 May 11.

Abstract

Preventing the biogenesis of disease-relevant proteins is an attractive therapeutic strategy, but attempts to target essential protein biogenesis factors have been hampered by excessive toxicity. Here we describe KZR-8445, a cyclic depsipeptide that targets the Sec61 translocon and selectively disrupts secretory and membrane protein biogenesis in a signal peptide-dependent manner. KZR-8445 potently inhibits the secretion of pro-inflammatory cytokines in primary immune cells and is highly efficacious in a mouse model of rheumatoid arthritis. A cryogenic electron microscopy structure reveals that KZR-8445 occupies the fully opened Se61 lateral gate and blocks access to the lumenal plug domain. KZR-8445 binding stabilizes the lateral gate helices in a manner that traps select signal peptides in the Sec61 channel and prevents their movement into the lipid bilayer. Our results establish a framework for the structure-guided discovery of novel therapeutics that selectively modulate Sec61-mediated protein biogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Membrane Proteins* / metabolism
  • Mice
  • Protein Biosynthesis
  • Protein Sorting Signals*
  • Protein Transport
  • SEC Translocation Channels / chemistry
  • SEC Translocation Channels / genetics
  • SEC Translocation Channels / metabolism

Substances

  • Protein Sorting Signals
  • Membrane Proteins
  • SEC Translocation Channels