Objectives: To evaluate the multiparametric diagnostic performance with non-enhancing tumor volume, apparent diffusion coefficient (ADC), and arterial spin labeling (ASL) to differentiate between atypical primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM).
Methods: One hundred and fifty-eight patients with pathologically confirmed typical PCNSL (n = 59), atypical PCNSL (hemorrhage, necrosis, or heterogeneous contrast enhancement, n = 29), and GBM (n = 70) were selected. Relative minimum ADC (rADCmin), mean (rADCmean), maximum (rADCmax), and rADCmax-min (rADCdif) were obtained by standardization of the contralateral white matter. Maximum cerebral blood flow (CBFmax) was obtained according to the ASL-CBF map. The regions of interests (ROIs) were manually delineated on the inner side of the tumor to further generate a 3D-ROI and obtain the non-enhancing tumor (nET) volume. The area under the curve (AUC) was used to evaluate the diagnostic performance.
Results: Atypical PCNSLs showed significantly lower rADCmax, rADCmean, and rADCdif than that of GBMs. GBMs showed significantly higher CBFmax and nET volume ratios than that of atypical PCNSLs. Combined three-variable models with rADCmean, CBFmax, and nET volume ratio were superior to one- and two-variable models. The AUC of the three-variable model was 0.96, and the sensitivity and specificity were 90% and 96.55%, respectively.
Conclusion: The combined evaluation of rADCmean, CBFmax, and nET volume allowed for reliable differentiation between atypical PCNSL and GBM.
Key points: • Atypical PCNSL is easily misdiagnosed as glioblastoma, which leads to unnecessary surgical resection. • The nET volume, ADC, and ASL-derived parameter (CBF) were lower for atypical PCNSL than that for glioblastoma. • The combination of multiple parameters performed well (AUC = 0.96) in the discrimination between atypical PCNSL and glioblastoma.
Keywords: Central nervous system; Glioblastoma; Lymphoma; Magnetic resonance imaging; Tumor volume.
© 2023. The Author(s).