Characterizing Intraindividual Podocyte Morphology In Vitro with Different Innovative Microscopic and Spectroscopic Techniques

Cells. 2023 Apr 25;12(9):1245. doi: 10.3390/cells12091245.

Abstract

Podocytes are critical components of the glomerular filtration barrier, sitting on the outside of the glomerular basement membrane. Primary and secondary foot processes are characteristic for podocytes, but cell processes that develop in culture were not studied much in the past. Moreover, protocols for diverse visualization methods mostly can only be used for one technique, due to differences in fixation, drying and handling. However, we detected by single-cell RNA sequencing (scRNAseq) analysis that cells reveal high variability in genes involved in cell type-specific morphology, even within one cell culture dish, highlighting the need for a compatible protocol that allows measuring the same cell with different methods. Here, we developed a new serial and correlative approach by using a combination of a wide variety of microscopic and spectroscopic techniques in the same cell for a better understanding of podocyte morphology. In detail, the protocol allowed for the sequential analysis of identical cells with light microscopy (LM), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Skipping the fixation and drying process, the protocol was also compatible with scanning ion-conductance microscopy (SICM), allowing the determination of podocyte surface topography of nanometer-range in living cells. With the help of nanoGPS Oxyo®, tracking concordant regions of interest of untreated podocytes and podocytes stressed with TGF-β were analyzed with LM, SEM, Raman spectroscopy, AFM and SICM, and revealed significant morphological alterations, including retraction of podocyte process, changes in cell surface morphology and loss of cell-cell contacts, as well as variations in lipid and protein content in TGF-β treated cells. The combination of these consecutive techniques on the same cells provides a comprehensive understanding of podocyte morphology. Additionally, the results can also be used to train automated intelligence networks to predict various outcomes related to podocyte injury in the future.

Keywords: Raman spectroscopy; atomic force microscopy; filopodia; foot processes; light microscopy; nanoGPS tracking; podocytes; scanning electron microscopy; scanning ion-conductance microscopy; single-cell RNA sequencing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Glomerular Filtration Barrier
  • Kidney Glomerulus
  • Microscopy, Electron, Scanning
  • Podocytes*
  • Spectrum Analysis, Raman

Grants and funding

This work was funded by the Interdisciplinary Center for Clinical Research (IZKF) of Friedrich-Alexander University Erlangen-Nürnberg with the grant number M4-IZKF F009 given to Janina Müller-Deile and Mario Schiffer by ’Bundesministerium für Bildung und Forschung (BMBF)” under the project name ’STOP-FSGS—Speed Translation-Oriented Progress to Treat FSGS, grant number 01GM2202D given to Janina Müller-Deile. G.S. and S.C. were funded by the European Union within the research projects 4D + nanoSCOPE, LRI C10, and by the “Freistaat Bayern” and European Union within the project Analytiktechnikum für Gesundheits- und Umweltforschung-AGEUM, StMWi-43-6623-22/1/3.