High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil-Water Separation

Polymers (Basel). 2023 Apr 22;15(9):1984. doi: 10.3390/polym15091984.

Abstract

Biodegradable polylactic acid (PLA) foams with open-cell structures are good candidates for oil-water separation. However, the foaming of PLA with high-expansion and uniform cell morphology by the traditional supercritical carbon dioxide microcellular foaming method remains a big challenge due to its low melting strength. Herein, a green facile strategy for the fabrication of open-cell fully biodegradable PLA-based foams is proposed by introducing the unique stereocomplexation mechanism between PLLA and synthesized star-shaped PDLA for the first time. A series of star-shaped PDLA with eight arms (8-s-PDLA) was synthesized with different molecular weights and added into the PLLA as modifiers. PLLA/8-s-PDLA foams with open-cells structure and high expansion ratios were fabricated by microcellular foaming with green supercritical carbon dioxide. In detail, the influences of induced 8-s-PDLA on the crystallization behavior, rheological properties, cell morphology and consequential oil-water separation performance of PLA-based foam were investigated systemically. The addition of 8-s-PDLA induced the formation of SC-PLA, enhancing crystallization by acting as nucleation sites and improving the melting strength through acting as physical cross-linking points. The further microcellular foaming of PLLA/8-s-PDLA resulted in open-cell foams of high porosity and high expansion ratios. With an optimized foaming condition, the PLLA/8-s-PDLA-13K foam exhibited an average cell size of about 61.7 μm and expansion ratio of 24. Furthermore, due to the high porosity of the interconnected open cells, the high-absorption performance of the carbon tetrachloride was up to 37 g/g. This work provides a facile green fabrication strategy for the development of environmentally friendly PLA foams with stable open-cell structures and high expansion ratios for oil-water separation.

Keywords: biodegradable polylactide; oil–water separation; open-cell structure; stereocomplexation; supercritical microcellular foaming.

Grants and funding

This research was funded by the National Natural Science Foundation of China (grant numbers 52273042 and 52073229); Aeronautical Science Foundation of China; and (20200029053002); Natural Science Foundation of Shaanxi Province (2021KW-52).