Objective: This study aimed to develop a natural language processing algorithm (NLP) using machine learning (ML) techniques to identify and classify documentation of preoperative cannabis use status.
Materials and methods: We developed and applied a keyword search strategy to identify documentation of preoperative cannabis use status in clinical documentation within 60 days of surgery. We manually reviewed matching notes to classify each documentation into 8 different categories based on context, time, and certainty of cannabis use documentation. We applied 2 conventional ML and 3 deep learning models against manual annotation. We externally validated our model using the MIMIC-III dataset.
Results: The tested classifiers achieved classification results close to human performance with up to 93% and 94% precision and 95% recall of preoperative cannabis use status documentation. External validation showed consistent results with up to 94% precision and recall.
Discussion: Our NLP model successfully replicated human annotation of preoperative cannabis use documentation, providing a baseline framework for identifying and classifying documentation of cannabis use. We add to NLP methods applied in healthcare for clinical concept extraction and classification, mainly concerning social determinants of health and substance use. Our systematically developed lexicon provides a comprehensive knowledge-based resource covering a wide range of cannabis-related concepts for future NLP applications.
Conclusion: We demonstrated that documentation of preoperative cannabis use status could be accurately identified using an NLP algorithm. This approach can be employed to identify comparison groups based on cannabis exposure for growing research efforts aiming to guide cannabis-related clinical practices and policies.
Keywords: NLP; cannabis; natural language processing; perioperative outcomes; social determinants of health; substance use.
© The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: [email protected].