The microbial community plays an important role in the biogeochemical cycles in water aquatic ecosystems, and it is regulated by environmental variables. However, the relationships between microbial keystone taxa and water variables, which play a pivotal role in aquatic ecosystems, has not been clarified in detail. We analyzed the seasonal variation in microbial communities and co-occurrence network in the representative areas taking Lake Dongqian as an example. Both pro- and eukaryotic community compositions were more affected by seasons than by sites, and the prokaryotes were more strongly impacted by seasons than the eukaryotes. Total nitrogen, pH, temperature, chemical oxygen demand, dissolved oxygen and chlorophyll a significantly affected the prokaryotic community, while the eukaryotic community was significantly influenced by total nitrogen, ammonia, pH, temperature and dissolved oxygen. The eukaryotic network was more complex than that of prokaryotes, whereas the number of eukaryotic keystone taxa was less than that of prokaryotes. The prokaryotic keystone taxa belonged mainly to Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacteroidetes. It is noteworthy that some of the keystone taxa involved in nitrogen cycling are significantly related to total nitrogen, ammonia, temperature and chlorophyll a, including Polaromonas, Albidiferax, SM1A02 and Leptolyngbya so on. And the eukaryotic keystone taxa were found in Ascomycota, Choanoflagellida and Heterophryidae. The mutualistic pattern between pro- and eukaryotes was more evident than the competitive pattern. Therefore, it suggests that keystone taxa could be as bio-indicators of aquatic ecosystems.
Keywords: 16S rRNA gene; 18S rRNA gene; Lake Dongqian; bio-indicators; microbial keystone taxa; spatial–temporal distribution; water properties.
Copyright © 2023 Huang, Li, Li, Laanbroek and Zhang.