Transactive response DNA-binding protein of 43 kDa (TDP-43) is a highly conserved, ubiquitously expressed nucleic acid-binding protein that regulates DNA/RNA metabolism. Genetics and neuropathology studies have linked TDP-43 to several neuromuscular and neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Under pathological conditions, TDP-43 mislocalizes to the cytoplasm where it forms insoluble, hyper-phosphorylated aggregates during disease progression. Here, we optimized a scalable in vitro immuno-purification strategy referred to as tandem detergent-extraction and immunoprecipitation of proteinopathy (TDiP) to isolate TDP-43 aggregates that recapitulate those identified in postmortem ALS tissue. Moreover, we demonstrate that these purified aggregates can be utilized in biochemical, proteomics, and live-cell assays. This platform offers a rapid, accessible, and streamlined approach to study ALS disease mechanisms, while overcoming many limitations that have hampered TDP-43 disease modeling and therapeutic drug discovery efforts.
Keywords: Biochemistry; Biological sciences; Molecular biology; Proteomics.
© 2023 The Author(s).