Construction of oxygen vacancies and heterostructure in VO2-x/NC with enhanced reversible capacity, accelerated redox kinetics, and stable cycling life for sodium ion storage

J Colloid Interface Sci. 2023 Sep 15:646:34-42. doi: 10.1016/j.jcis.2023.05.047. Epub 2023 May 10.

Abstract

Developing anode materials with high reversible capacity, fast redox kinetics, and stable cycling life for Na+ storage remains a great challenge. Herein, the VO2 nanobelts with oxygen vacancies supported on nitrogen-doped carbon nanosheets (VO2-x/NC) were developed. Benefitting from the enhanced electrical conductivity, the accelerated kinetics, the increased active sites as well as the constructed 2D heterostructure, the VO2-x/NC delivered extraordinary Na+ storage performance in half/full battery. Theoretical calculations (DFT) demonstrated that oxygen vacancies could regulate the adsorption ability for Na+, enhance electronic conductivity, as well as achieve rapid and reversible Na+ adsorption/desorption. The VO2-x/NC exhibited high Na+ storage capacity of 270 mAh g-1 at 0.2 A g-1, and impressive cyclic stability with 258 mAh g-1 after 1800 cycles at 10 A g-1. The assembled sodium-ion hybrid capacitors (SIHCs) could achieve maximum energy density/power output of 122 Wh kg-1/9985 W kg-1, ultralong cycling life with 88.4% capacity retention after 25,000 cycles at 2 A g-1, and practical applications (55 LEDs could be actuated for 10 min), promising to be utilized in a practicable Na+ storage.

Keywords: Anode materials; Oxygen vacancies; Sodium ion batteries; Sodium-ion hybrid capacitors; VO(2-x)/NC heterostructure.