Since the discovery of Legionnaires' disease (LD), limited progress has been made in understanding the epidemiology of sporadic cases of LD. Outbreaks have confirmed that air conditioning and potable water systems can be sources of community-acquired LD. However, studying the association between water quality and LD incidence has been challenging due to the heterogeneity of water systems across large geographic areas. Furthermore, although seasonal trends in incidence have been linked to increased rainfall and temperatures, the large geographic units have posed similar difficulties. To address this issue, a retrospective ecological study was conducted in Washington, DC, from 2001 to 2019. The study identified aseasonal pattern of LD incidence, with the majority of cases occurring between June and December, peaking in August, October, and November. Increased temperature was found to be associated with LD incidence. In surface water, higher concentrations of manganese, iron, and strontium were positively associated with LD, while aluminum and orthophosphate showed a negative association. Intreatment plant water, higher concentrations of total organic carbon, aluminum, barium, and chlorine were positively associated with LD, while strontium, zinc, and orthophosphate showed a negative association. The results for orthophosphates and turbidity were inconclusive, indicating the need for further research.
Keywords: Legionnaires’; Washington, DC; disease; drinking water quality; environmental water quality; meteorological factors; seasonality.