In preclinical Alzheimer's disease, neuro-functional changes due to amyloid-β (Aβ) deposition are not synchronized in different brain lobes and subcortical nuclei. This study aimed to explore the correlation between brain Aβ burden, connectivity changes in an ultra-large structural scale, and cognitive function in mild cognitive impairment. Participants with mild cognitive impairment were recruited and underwent florbetapir (F18-AV45) PET, resting-state functional MRI, and multidomain neuropsychological tests. AV-45 standardized uptake value ratio (SUVR) and functional connectivity of all participants were calculated. Of the total 144 participants, 72 were put in the low Aβ burden group and 72 in the high Aβ burden group. In the low Aβ burden group, all connectivities between lobes and nuclei had no correlation with SUVR. In the high Aβ burden group, SUVR showed negative correlations with the Subcortical-Occipital connectivity (r=-0.36, P = 0.02) and Subcortical-Parietal connectivity (r=-0.26, P = 0.026). Meanwhile, in the high Aβ burden group, SUVR showed positive correlations with the Temporal-Prefrontal connectivity (r = 0.27, P = 0.023), Temporal-Occipital connectivity (r = 0.24, P = 0.038), and Temporal-Parietal connectivity (r = 0.32, P = 0.006). Subcortical to Occipital and Parietal connectivities had positive correlations with general cognition, language, memory, and executive function. Temporal to Prefrontal, Occipital, and Parietal connectivities had negative correlations with memory function, executive function, and visuospatial function, and a positive correlation with language function. In conclusion, Individuals with mild cognitive impairment with high Aβ burden have Aβ-related bidirectional functional connectivity changes between lobes and subcortical nuclei that are associated with cognitive decline in multiple domains. These connectivity changes reflect neurological impairment and failed compensation.
Keywords: Executive function; Functional MRI; Language function; Memory function; Positron emission tomography; Visuospatial function.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.