For large-scale multiobjective evolutionary algorithms based on the grouping of decision variables, the challenge is to design a stable grouping strategy to balance convergence and population diversity. This paper proposes a large-scale multiobjective optimization algorithm with two alternative optimization methods (LSMOEA-TM). In LSMOEA-TM, two alternative optimization methods, which adopt two grouping strategies to divide decision variables, are introduced to efficiently solve large-scale multiobjective optimization problems. Furthermore, this paper introduces a Bayesian-based parameter-adjusting strategy to reduce computational costs by optimizing the parameters in the proposed two alternative optimization methods. The proposed LSMOEA-TM and four efficient large-scale multiobjective evolutionary algorithms have been tested on a set of benchmark large-scale multiobjective problems, and the statistical results demonstrate the effectiveness of the proposed algorithm.
Keywords: Bayesian-based parameter adjusting; evolutionary algorithms; large-scale multiobjective optimization; two alternative optimization methods.