Tissue factor overexpression in triple-negative breast cancer promotes immune evasion by impeding T-cell infiltration and effector function

Cancer Lett. 2023 Jul 1:565:216221. doi: 10.1016/j.canlet.2023.216221. Epub 2023 May 14.

Abstract

Triple-negative breast cancer (TNBC) remains a most deadly human malignancy with limited response to chemotherapy, targeted therapy and immunotherapy. Tumor immunoenvironment plays an increasingly important role in therapy outcome. Tissue factor (TF) is the target of the FDA-approved ADC Tivdak. HuSC1-39 is the parent antibody of MRG004A, a clinical stage TF-ADC (NCT04843709). Here, we employed HuSC1-39 (termed "anti-TF") to investigate the role of TF in regulating immune-tolerance in TNBC. We found that patients with aberrant TF expression had a poor prognosis and low immune effector cell infiltration, characterizing as "cold tumor". In the 4T1 TNBC syngeneic mouse model, knockout of tumor cell TF inhibited tumor growth and increased tumor infiltration of effector T cell, which was not dependent on the clotting inhibition. In an immune-reconstituted M-NSG mouse model of TNBC, anti-TF inhibited tumor growth, which was further enhanced by a dual-targeting anti-TF&TGFβR fusion protein. There were diminished P-AKT and P-ERK signaling and profound tumor cell death in treated tumors. Transcriptome analyses and immunohistochemistry revealed a dramatically improved tumor immunoenvironment including the increase of effector T cells, decrease of Treg cells and the transformation of tumor into "hot tumor". Moreover, employing qPCR analysis and T cell culture, we further demonstrated that TF expression in tumor cells is sufficient to block the synthesis and secretion of T cell-recruiting chemokine CXCL9/10/11. Treatment of TF-high TNBC cells with anti-TF or TF-knockout all stimulated CXCL9/10/11 production, promoted T cell migration and effector function. Thus, we have identified a new mechanism of TF in TNBC tumor progression and therapy resistance.

Keywords: Chemokine; Cytotoxic T cell; TGFβ; TNBC; Tissue factor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Humans
  • Immune Evasion
  • Immunotherapy
  • Mice
  • Signal Transduction
  • Thromboplastin / genetics
  • Thromboplastin / metabolism
  • Triple Negative Breast Neoplasms* / drug therapy
  • Triple Negative Breast Neoplasms* / genetics
  • Triple Negative Breast Neoplasms* / metabolism

Substances

  • Thromboplastin